# The §-Calculus a declarative model of reversible programming 

Hannah Earley

h@nnah.io - DAMTP, Cambridge • Vaire Computing

## reversible programming

$א$ : motivation, semantics, \& tutorial
$א$ : advanced features \& properties
alethe $+\boldsymbol{\alpha}$ concurrency

## Irreversible Computing



## Invertibility?



## Invertibility?



## 


inverse
programs


## Reversible Computing



* but reversible!


## Reversible Computing



Fredkin / CSWAP

| 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |



Toffoli / CCNOT

| 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 |

## Reversible Computing

$n x[2]$
procedure fib

$$
\text { if } n=0
$$

$$
\operatorname{then} x_{0}+=1
$$



$$
x_{1}+=1
$$

$$
\text { else } n-=1
$$

call fib

$$
x_{0}+=x_{1}
$$

$$
x_{0} \Leftrightarrow x_{1}
$$

$$
\text { fi } x_{0}=x_{1}
$$

## Reversible Computing

$n x[2]$
procedure fib

$$
\text { if } n=0
$$

then $x_{0}+=1$

$$
x_{1}+=1
$$

$$
\text { else } n-=1
$$

call fib
$x_{0}+=x_{1}$
$x_{0} \Leftrightarrow x_{1}$
fi $x_{0}=x_{1}$


## Reversible Computing

$n m k$
procedure fac

$$
\begin{aligned}
& m+=1 \\
& \text { from } m=1 \\
& \text { loop } m \Leftrightarrow k \\
& \text { from } m=0 \\
& \operatorname{loop} m+=n \\
& k-=1 \\
& \text { until } k=0 \\
& n-=1
\end{aligned}
$$


until $n=1$
$n-=1$
$m \Leftrightarrow n$

## Reversible Computing

$n m k$
procedure $f a c$

$$
\begin{aligned}
& m+=1 \\
& \text { from } m=1 \\
& \text { loop } m \Leftrightarrow k \\
& \text { from } m=0 \\
& \operatorname{loop} m+=n \\
& \quad k-=1 \\
& \text { until } k=0 \\
& n-=1
\end{aligned}
$$

until $n=1$

$n-=1$
$m \Leftrightarrow n$

## Sandia National Laboratories

plus $\langle x, y\rangle \triangleq$ case $y$ of

$$
\begin{aligned}
& Z \quad \rightarrow\lfloor\langle x\rangle\rfloor \\
& S(u) \rightarrow \operatorname{let}\left\langle x^{\prime}, u^{\prime}\right\rangle=\text { plus }\langle x, u\rangle \text { in }\left\langle x^{\prime}, S\left(u^{\prime}\right)\right\rangle
\end{aligned}
$$

fib $n \triangleq$ case $n$ of

$$
\begin{aligned}
Z \quad & \rightarrow\langle S(Z), S(Z)\rangle \\
S(m) \rightarrow & \text { let }\langle x, y\rangle=\text { fib } n \text { in } \\
& \text { let } z=\text { plus }\langle y, x\rangle \text { in } z
\end{aligned}
$$

## RFUN

| type $a+b=\operatorname{InL} a \mid \operatorname{InR} b$ | cantorUnpair : : $\mathbb{N} \leftrightarrow \mathbb{N} \times \mathbb{N}:$ : cantorPair |
| :---: | :---: |
| type $a \times b=(a, b)$ | $n \quad \leftrightarrow$ iter $\$ n,(\mathrm{Z}, \mathrm{Z})$ |
| type $\mathbb{N}=\mathrm{Z} \mid \mathrm{S} \mathbb{N}$ | iter \$ S $n,(\mathrm{Z}, b) \quad \leftrightarrow$ iter $\$ n,(\mathrm{~S} b, \mathrm{Z})$ |
| trace : $: f:(a+b \leftrightarrow a+c) \rightarrow b \leftrightarrow c$ | iter \$ S $n,(\mathrm{~S} a, b) \leftrightarrow$ iter $\$ n,(a, \mathrm{~S} b)$ |
|  | iter $\$ \mathrm{Z},(a, b) \quad \leftrightarrow(a, b)$ |
| --- definition omitted | where iter : $: \mathbb{N} \times(\mathbb{N} \times \mathbb{N})$ |
| addSub $:: \mathbb{N}+\mathbb{N} \leftrightarrow \mathbb{N}+\mathbb{N}$ | fib' $::(\mathbb{N} \times \mathbb{N})+\mathbb{N} \leftrightarrow(\mathbb{N} \times \mathbb{N})+(\mathbb{N} \times \mathbb{N})$ |
| $\mid \mathrm{InL}(\mathrm{S} n) \leftrightarrow \operatorname{InL} n$ | $\mid \mathrm{InR} n \quad \leftrightarrow$ iter $\$(n,(\mathrm{Z}, \mathrm{Z}))$ |
| InL Z $\quad \leftrightarrow$ InR Z | iter \$ (S $n,(a, b)) \leftrightarrow$ iter $^{\prime} \$(n$, add $(b, a))$ |
| $\operatorname{InR} n \quad \leftrightarrow \operatorname{InR}(\mathrm{~S} n)$ | iter \$ (Z, $(a, b)) \leftrightarrow \operatorname{InR}\left(\right.$ add $\left._{1} a, a^{\text {a }} \mathrm{dd}_{1} b\right)$ |
| $\operatorname{add}_{1}:: \mathbb{N} \leftrightarrow \mathbb{N}:: s u b_{1}$ | iter' $^{\prime}(n,(a, b)) \leftrightarrow$ iter $\$(n,(a, \mathrm{~S} b))$ |
| $n \leftrightarrow$ trace $\sim$ f:addSub $n$ | $\operatorname{InL}(n,(\mathrm{~S} a)) \quad \leftrightarrow$ iter $\$(n,(\mathrm{~S} a, \mathrm{Z}))$ |
|  | $\operatorname{InL}(n, \mathrm{Z}) \quad \leftrightarrow \operatorname{InL}($ cantorUnpair $n)$ |
| add $:: \mathbb{N} \times \mathbb{N} \leftrightarrow \mathbb{N} \times \mathbb{N}:: ~ s u b$ | where iter : $\mathbb{N} \times(\mathbb{N} \times \mathbb{N})$ |
| $a, b$ iter $\$ a, \mathrm{Z}, b$ | iter ${ }^{\prime}:: \mathbb{N} \times(\mathbb{N} \times \mathbb{N})$ |
| iter \$ S $a, a^{\prime}, b \leftrightarrow$ iter \$ $a, \mathrm{~S} a^{\prime}$, add $_{1} b$ |  |
| iter \$ Z $, a, b \quad \leftrightarrow a, b$ | fib : $\mathbb{N} \leftrightarrow \mathbb{N} \times \mathbb{N}$ |
| where iter : $: \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ | $n \leftrightarrow$ trace $\sim f:$ fib $^{\prime} n$ |

$\operatorname{swap}(a \mid b)\}(a \mid b) p a w s$
$\operatorname{add}(a \mid b)\{a[\operatorname{add}(a \mid b) b u s z \mid b] a\}(a \mid b) b u s$
less-than $(a|b| p)\{a$
$[b[$ less-than $(a|b| p)$ or-equal $] b] \mid[p \mid p]$
$\mid a\}(a|b| p)$ or-equal
remquo $(n|d| q)$ \{
less-than $(d|n| p)$ or-equal
$p[\operatorname{sub}(n \mid d)$ dda remquo $(n|d| q)$ ddalum $] q$
$\}(n|d| q)$ ddalum

```
fact(n|d){n[n[
    z|nz|d
    fact(n|d)orial'
    muladd(n|d|z)ouqmer
    swap(n|z)paws
    d|zn|zn|z
]n]n} (n|d)orial'
fact(n){z|d
    fact(n|d)orial'
d|z} (n)orial
```


## kayak

(defsub pfunc $\left(\psi^{\prime} \psi i \alpha s \varepsilon\right)$

$$
\begin{aligned}
& \left(\left(\psi^{\prime}-i\right)+=\left(\left(\alpha s_{-} i\right) \times /\left(\psi_{-} i\right)\right)\right) \\
& \left(\left(\psi^{\prime} \_i\right)-=\left(\varepsilon \times /\left(\psi_{-}((i+1) \wedge 127)\right)\right)\right) \\
& \left.\left(\left(\psi_{-}^{\prime} i\right)-=\left(\varepsilon \times /\left(\psi_{-}((i-1) \wedge 127)\right)\right)\right)\right)
\end{aligned}
$$

(defsub schstep $\left(\psi_{R} \psi_{I} \alpha s \varepsilon\right)$
(for $i=0$ to $127\left(\right.$ call pfunc $\left.\left.\psi_{R} \psi_{I} i \alpha \delta \varepsilon\right)\right)$ $\left(\right.$ for $i=0$ to $127\left(\right.$ rcall pfunc $\left.\left.\left.\psi_{I} \psi_{R} i \alpha s \varepsilon\right)\right)\right)$

яR

## theseus

reversible programming
$א$ : motivation, semantics, \& tutorial
$א$ : advanced features \& properties
alethe $+\boldsymbol{\alpha}$ concurrency

## The א-Calculus: Motivation

- $\lambda$-calculus inspiration
- simple definition
- reduction semantics
- self-contained execution
- molecular programming


## The א-Calculus: Motivation

- $\lambda$-calculus inspiration

- simple definition
- reduction semantics
- self-contained execution
- molecular programming



# Attempt 1: The $\Sigma$-Calculus 

$$
\begin{aligned}
\tau:: & =\left\langle\pi \tau^{*}: \tau^{*} \pi\right\rangle|\operatorname{VAR}| \operatorname{REF} \mid \tau * \quad \text { definition } \\
\text { CONS } & \equiv\langle\pi\{n c\} z f: c\{n f\} z \pi\rangle \\
\text { NIL } & \equiv\langle\pi\{n c\} z f: n\{f c\} z \pi\rangle \\
\text { REV } & \equiv\langle\pi l \top: \operatorname{NIL}\{\lambda \nu\}\{\{\varepsilon \varepsilon\} l\} \pi\rangle \\
\lambda & \equiv\left\langle\pi\{\operatorname{REV} \nu\}\left\{\left\{r^{\prime} r^{\prime \prime}\right\}\left\{\tilde{l l}^{\prime} l^{\prime \prime}\right\}\right\} \tilde{r}: \tilde{l}\left\{\operatorname{REV}^{\prime} \nu\right\}\left\{\left\{\tilde{r} r^{\prime} r^{\prime \prime}\right\}\left\{l^{\prime} l^{\prime \prime}\right\}\right\} \pi\right\rangle \\
\nu & \equiv\left\langle\pi\left\{\operatorname{REV}^{\prime} \lambda\right\}\left\{r\left\{l^{\prime} l^{\prime \prime}\right\}\right\} \operatorname{CONS}: \operatorname{CONS}\{\operatorname{REV} \lambda\}\left\{\left\{l^{\prime} r\right\} l^{\prime \prime}\right\} \pi\right\rangle \\
\operatorname{REV}^{\prime} & \equiv\langle\pi\{\lambda \nu\}\{r\{\varepsilon \varepsilon\}\} \operatorname{NIL}: \perp r \pi\rangle
\end{aligned}
$$

list reversal

## Attempt 2: The $\aleph$-Calculus

- declarative
- reversible TRS semantics, without history
- minimalistic definition

$$
\begin{aligned}
\text { (PATTERN TERM) } & \pi::=\operatorname{sym}|\operatorname{VAR}|\left(\pi^{*}\right) \\
\text { (RULE) } & \rho::=\pi^{*}=\pi^{*} \\
\text { (DEFINITION) } & \delta::=\rho: \rho^{*} \mid!\pi^{*}
\end{aligned}
$$

## Addition

$$
\begin{array}{rlrl}
! & +a b(0) ; & !() c b+ \\
& +a \mathrm{Z}()=0 a \mathrm{Z}+ \\
& +a(\mathrm{Sb}) 0=0(\mathrm{~S} c)(\mathrm{Sb})+: & & (\mathrm{ADD}-\mathrm{BASE}) \\
& +a b 0=0 c b+. & & (\mathrm{ADD}-\mathrm{STEP}) \\
& \mathrm{ADTEP}-\mathrm{SUB})
\end{array}
$$

$$
\begin{aligned}
\text { (PATTERN TERM) } & \pi::=\mathrm{SYM}|\operatorname{VAR}|\left(\pi^{*}\right) \\
\text { (RULE) } & \rho::=\pi^{*}=\pi^{*} \\
\text { (DEFINITION) } & \delta::=\rho: \rho^{*} \mid!\pi^{*}
\end{aligned}
$$

## Addition

$$
\begin{array}{rlrl}
! & +a b(0 ; \quad!) c b+ \\
& +a \mathrm{Z} 0=0 a \mathrm{Z}+ \\
& +a(\mathrm{~S} b) 0=0(\mathrm{~S} c)(\mathrm{S} b)+: & & (\mathrm{ADD}-\mathrm{BASE}) \\
& +a b 0=0 c b+. & & (\mathrm{ADD}-\mathrm{STEP}) \\
& \mathrm{ADD}-\mathrm{STEP}-\mathrm{SUB})
\end{array}
$$

$$
!+320
$$

## Sandia National Laboratories

## Addition

$$
\begin{array}{rlrl}
! & +a b(0 ; \quad!) c b+ \\
& +a \mathrm{Z} 0=0 a \mathrm{Z}+ \\
& +a(\mathrm{~S} b) 0=0(\mathrm{~S} c)(\mathrm{S} b)+: & & (\mathrm{ADD}-\mathrm{BASE}) \\
& +a b 0=0 c b+. & & (\mathrm{ADD}-\mathrm{STEP}) \\
& \mathrm{ADD}-\mathrm{STEP}-\mathrm{SUB})
\end{array}
$$

$$
\begin{array}{ll}
! & +320 \leftrightarrow \frac{\{a \mapsto 3, b \mapsto 1\}}{}  \tag{ADD-STEP}\\
\frac{\curvearrowleft}{+310} & \text { (ADD-STEP) } \\
\text { (ADD-STEP-SUB) } & \text { (ADD-STEP) }
\end{array}
$$

## Addition

$$
\begin{array}{rlrl}
!+a b() ; & !() c b+ \\
& +a \mathrm{Z} 0=0 a \mathrm{Z}+; \\
& +a(\mathrm{~S} b) 0=0(\mathrm{~S} c)(\mathrm{S} b)+: & & (\mathrm{ADD}-\mathrm{BASE}) \\
& +a b 0=0 c b+. & & (\mathrm{ADD}-\mathrm{STEP}) \\
& \mathrm{ADTEP}-\mathrm{SUB})
\end{array}
$$

$$
\begin{align*}
& \text { (ADD-STEP-SUB) }  \tag{ADD-STEP}\\
& \text { (ADD-STEP) } \\
& \text { (ADD-STEP-SUB) }
\end{align*}
$$

## Addition

$$
\begin{array}{rlrl}
! & +a b(0) ; & !() c b+ \\
& +a \mathrm{Z} 0=0 a \mathrm{Z}+ \\
& +a(\mathrm{Sb}) 0=0(\mathrm{~S} c)(\mathrm{S} b)+: & & (\mathrm{ADD}-\mathrm{BASE}) \\
& +a b 0=0 c b+. & & (\mathrm{ADD}-\mathrm{STEP}) \\
& \mathrm{ADTEP}-\mathrm{SUB})
\end{array}
$$

$$
\begin{align*}
& !+320 \leadsto \frac{\{a \mapsto 3, b \mapsto 1\}}{} \tag{ADD-STEP}
\end{align*}
$$

$$
\begin{aligned}
& \text { (ADD-STEP-SUB) } \\
& \text { (ADD-STEP) } \\
& \text { (ADD-STEP-SUB) } \\
& \text { (ADD-BASE) }
\end{aligned}
$$

## Addition

$$
\begin{array}{rlrl}
! & +a b(0) ; & !() c b+ \\
& +a \mathrm{Z} 0=0 a \mathrm{Z}+ \\
& +a(\mathrm{~S} b) 0=0(\mathrm{~S} c)(\mathrm{S} b)+: & & (\mathrm{ADD}-\mathrm{BASE}) \\
& +a b 0=0 c b+. & & (\mathrm{ADD}-\mathrm{STEP}) \\
& \mathrm{ADD}-\mathrm{STEP}-\mathrm{SUB})
\end{array}
$$

## Addition

$$
\begin{array}{rlrl}
! & +a b() ; \quad!() c b+ \\
& +a \mathrm{Z}()=0 a \mathrm{Z}+ \\
& +a(\mathrm{~S} b) 0=0(\mathrm{~S} c)(\mathrm{S} b)+: & & (\mathrm{ADD}-\mathrm{BASE}) \\
& +a b 0=0 c b+. & & (\mathrm{ADD}-\mathrm{STEP}) \\
& \mathrm{ADD}-\mathrm{STEP}-\mathrm{SUB})
\end{array}
$$

## Addition



## Addition



## Addition






## Addition



## Addition



## Addition



## Addition



## Addition



## Addition



## Addition



## Addition



## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

## Sandia National Laboratories

## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

```
!SQm(); ! () n SQ;
    SQ m () = SQ Z m SQ; (SQ-BEGIN)
    SQ s (Sk) SQ = SQ (S s}\mp@subsup{s}{}{\prime\prime})k\textrm{SQ}:\quad(\textrm{SQ}-\textrm{STEP}
        +sk()=0 s'k+. -- s'ts < < + <
        + s'k()=0 s'l}k+.\quad-- \mp@subsup{s}{}{\prime\prime}\leftarrow\mp@subsup{s}{}{\prime}+
    SQ n Z SQ = () n SQ;
    (SQ-END)
```


## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

```
! SQ m (); ! () n SQ;
    SQ m () = SQ Z m SQ;
    SQ}s(\textrm{S}k)\textrm{SQ}=\textrm{SQ}(\mp@subsup{\textrm{S}}{}{\prime\prime})k\textrm{SQ
    +sk()=0 s'k+.
    + s}k(0)=0 s\mp@subsup{s}{}{\prime\prime}k+
\(\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=() n \mathrm{SQ}\);
(SQ-BEGIN)
(SQ-STEP)
-- \(s^{\prime} \leftarrow s+k\)
\[
+s^{\prime} k()=0 s^{\prime \prime} k+
\]
-- \(s^{\prime \prime} \leftarrow s^{\prime}+k\)
(SQ-END)
```



## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; \quad!n \mathrm{SQ} ; & \\
\text { SQ } m 0=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k(0)=0 s^{\prime \prime} k+. & -s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$


! SQ 30

## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{aligned}
!\mathrm{SQ} m(0 ; \quad!n \mathrm{SQ} ; & \\
\text { SQ } m 0=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S} s^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k 0=0 s^{\prime \prime} k+. & -s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{aligned}
$$


! Sq 30 = SQ Z 3 SQ

## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{aligned}
& \text { ! SQ m (); ! () } n \text { SQ; } \\
& \mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} \text {; } \\
& \text { (SQ-BEGIN) } \\
& \mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: \\
& +s k()=0 s^{\prime} k+. \\
& +s^{\prime} k()=0 s^{\prime \prime} k+. \\
& \mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} \text {; } \\
& \text { (SQ-STEP) } \\
& \text {-- } s^{\prime} \leftarrow s+k \\
& \text {-- } s^{\prime \prime} \leftarrow s^{\prime}+k \\
& \text { (SQ-END) }
\end{aligned}
$$


! Sq 3()$=\mathrm{Sq} \mathrm{Z} 3 \mathrm{Sq}=\mathrm{Sq} 52 \mathrm{Sq}$

## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; \quad!() n \mathrm{SQ} \\
\mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k()=0 s^{\prime \prime} k+. & -s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$


! $\mathrm{SQ} 30=\mathrm{SQ} \mathrm{Z} 3 \mathrm{SQ}=\mathrm{SQ} 52 \mathrm{SQ}=\mathrm{SQ} 81 \mathrm{SQ}$

## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; \quad!n \mathrm{SQ} \\
\mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k()=0 s^{\prime \prime} k+. & --s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$


! SQ $30=\mathrm{Sq} \mathrm{Z} 3 \mathrm{SQ}=\mathrm{Sq} 52 \mathrm{SQ}=\mathrm{Sq} 81 \mathrm{SQ}=\mathrm{SQ} 9 \mathrm{Z} \mathrm{SQ}$

## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; \quad!n \mathrm{SQ} \\
\mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & --s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k\left(0=0 s^{\prime \prime} k+.\right. & -s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$


$!\quad \mathrm{SQ} 3()=\mathrm{SQ} \mathrm{Z} 3 \mathrm{SQ}=\mathrm{SQ} 52 \mathrm{SQ}=\mathrm{SQ} 81 \mathrm{SQ}=\mathrm{SQ} 9 \mathrm{Z} \mathrm{SQ}=09 \mathrm{SQ}!$

## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m(0 ; \quad!() n \mathrm{SQ} ; & \\
\mathrm{SQ} m(0)=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k()=0 s^{\prime \prime} k+. & --s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$


! 010 SQ

## © 0 undo

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{lll}
!\mathrm{SQ} m() ; & !() n \mathrm{SQ} ; & \\
& \mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s & (\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
& +s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+ \\
\quad+s^{\prime} k()=0 s^{\prime \prime} k+. & -s^{\prime \prime} \leftarrow s^{\prime}+ \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$


! $010 \mathrm{Sq}=\mathrm{Sq} 10 \mathrm{Z} \mathrm{SQ}$

## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; & !() n \mathrm{SQ} \\
\mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k()=0 s^{\prime} k+. & --s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k 0=0 s^{\prime \prime} k+. & --s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$


! $010 \mathrm{SQ}=\mathrm{Sq} 10 \mathrm{Z} \mathrm{Sq}=\mathrm{SQ} 91 \mathrm{SQ}$

## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; & !() n \mathrm{SQ} \\
\mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k()=0 s^{\prime} k+. & --s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k()=0 s^{\prime \prime} k+. & --s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$


! $010 \mathrm{SQ}=\mathrm{SQ} 10 \mathrm{Z} \mathrm{SQ}=\mathrm{SQ} 91 \mathrm{SQ}=\mathrm{SQ} 62 \mathrm{SQ}$

## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; & !() n \mathrm{SQ} \\
\mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k()=0 s^{\prime} k+. & --s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k()=0 s^{\prime \prime} k+. & --s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$


! $010 \mathrm{SQ}=\mathrm{SQ} 10 \mathrm{Z} \mathrm{SQ}=\mathrm{SQ} 91 \mathrm{SQ}=\mathrm{SQ} 62 \mathrm{SQ}=\mathrm{SQ} 13 \mathrm{SQ}$

## Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

```
!SQm(); ! () n SQ;
    SQ m () = SQ Z m SQ;
(SQ-BEGIN)
    SQ}s(\textrm{S}k)\textrm{SQ}=\textrm{SQ}(\mp@subsup{\textrm{S}}{}{\prime\prime})k\textrm{SQ
    +sk()=0 s}\mp@subsup{s}{}{\prime}k+
    + s}k()=0 s\mp@subsup{s}{}{\prime\prime}k+
    SQ n Z SQ = ) n SQ;
(SQ-STEP)
    -- s}\mp@subsup{s}{}{\prime}\leftarrows+
\(\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=() n \mathrm{SQ}\);
```


! $010 \mathrm{SQ}=\mathrm{Sq} 10 \mathrm{Z} \mathrm{Sq}=\mathrm{Sq} 91 \mathrm{SQ}=\mathrm{Sq} 62 \mathrm{SQ}=\mathrm{SQ} 13 \mathrm{SQ} \perp$
reversible programming
$א$ : motivation, semantics, \& tutorial

## א: advanced features \& properties

alethe $+\boldsymbol{\alpha}$ concurrency

## 


$(\operatorname{MAP} f) \operatorname{NiL} 0=0 \operatorname{NiL}(\operatorname{MAP} f) ;$
$(\operatorname{MAP} f)\left(\right.$ Cons $\left.x x_{s}\right) 0=0($ Cons $y y s)(\operatorname{MAP} f):$

$$
f x(0)=0 y f
$$

$$
(\operatorname{MAP} f) x s 0=0 y s(\operatorname{MAP} f)
$$

$$
\begin{aligned}
& {[]^{`} \operatorname{MAP} f^{\prime}[] ;} \\
& {[x \cdot x \delta]^{\prime} \operatorname{MAP} f^{\prime}[y \cdot y]:} \\
& x^{\prime} f^{\prime} y . \\
& x s^{\prime} \operatorname{MAP} f^{\prime} y s .
\end{aligned}
$$

$!(\mathrm{MAP} \square)[358] 0$


## r-Turing Completeness

[BLANK $x \cdot x]$ ' $\operatorname{Pop}$ ' Blank $[x \cdot x]$;<br>$[(\operatorname{SYM} x) \cdot x]^{\prime}{ }^{\prime} \operatorname{POP}^{\prime}($ (Sym $x) x ;$;<br>[] 'Pop' Blank [];

(TAPE $\ell x r)^{\text {'LEFT }}{ }^{\prime}\left(\right.$ TAPE $\left.\ell^{\prime} x^{\prime} r^{\prime}\right)$ :

$$
\ell^{\prime} \mathrm{POP}^{\prime} x^{\prime} \ell^{\prime} .
$$

$$
r^{\prime} \text { POP' }^{\prime} x r .
$$

! TAPE $\ell x r$;
! Sym $x$;
! Blank;
$t^{\prime}$ Right $t^{\prime}$ :
$t^{\prime}$ Left $^{\prime} t$.

## r-Turing Completeness

$!$ START $t_{1} t_{2} t_{3} t_{4} t_{5} t_{6} ;$
! STOP $t_{1} t_{2} t_{3} t_{4} t_{5} t_{6}$;
$S_{1}\left(\right.$ TAPE $\left.\ell_{1}(\operatorname{Sym} C) r_{1}\right)\left(\right.$ TAPE $\ell_{2}$ BLANK $\left.r_{2}\right) t_{3}$ (TAPE $\left.\ell_{4}(\operatorname{Sym} D) r_{4}\right) t_{5} t_{6}$
$=S_{2}\left(\right.$ TAPE $\ell_{1}($ SYM $\left.B) r_{1}\right)\left(\right.$ TAPE $\ell_{2}($ SYM $\left.A) r_{2}\right) t_{3}^{\prime}\left(\right.$ TAPE $\ell_{4}($ SYM $\left.F) r_{4}\right) t_{5} t_{6}^{\prime}$ : $t_{3}{ }^{\prime} \mathrm{LeFT}^{\prime} t_{3}^{\prime}$.
$t_{6}{ }^{\text {'RIGHT}}{ }^{\prime} t_{6}^{\prime}$.

## Ambiguity

- rTM: disjoint domains and codomains
- K : symmetric definitions
- more subtle - no term can match >2 (comp) patterns
- edge case - $\leq 1$ comp pattern and any halt patterns
- simple graph-based algorithm
- relaxation $\Rightarrow$ non-deterministic


## Execution Planning

$$
\begin{aligned}
& \text { a/b } b^{\prime}+(\operatorname{FRAC} p q)^{\prime} c / d: \\
& \text { 1. } \quad p-p^{\prime} . \\
& \text { 2. } \quad a / b^{\prime} \sim(\operatorname{FRAC} p q)^{\prime} c / d g . \\
& \text { 3. } \quad c / d^{\wedge} \sim\left(\operatorname{FRAC} p^{\prime} q\right)^{\prime} a / b g^{\prime} . \\
& \text { 4. } \quad(\mathrm{S} q) \square q^{2} . \\
& \text { 5. } \\
& \text { 6. } g^{\prime \prime} \times g^{\prime} q^{2} . \\
& g^{\prime} \times g^{\prime `} q^{2} .
\end{aligned}
$$



## Execution Planning

$$
\begin{aligned}
& \text { a/b }{ }^{`}+(\text { FRAC } p q)^{\prime} c / d: \\
& \text { 1. } \quad p-p^{\prime} . \\
& \text { 2. } \quad a / b^{\prime} \sim(\operatorname{FRAC} p q)^{\prime} c / d g . \\
& \text { 3. } \quad c / d^{\prime} \sim\left(\text { FRAC } p^{\prime} q\right)^{\prime} a / b g^{\prime} . \\
& \text { 4. } \\
& \text { 5. }(\mathrm{S} q) \square q^{2} . \\
& \text { 6. } g^{\prime} \times g^{\prime} q^{2} . \\
& g^{\prime} \times g^{\prime \prime} q^{2} .
\end{aligned}
$$



## Directional Evaluation

$!\mathrm{SQ} m$ ); ! $0 n \mathrm{SQ}$;

$$
\begin{array}{ll}
\mathrm{SQ} m \mathrm{~m}=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN})  \tag{SQ-BEGIN}\\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S} s^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & --s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k 0=0 s^{\prime \prime} k+. & -s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

$!\quad \mathrm{SQ} 30=\mathrm{SQ} \mathrm{Z} 3 \mathrm{SQ}_{\mathrm{Q}}=\mathrm{SQ} 52 \mathrm{SQ}=\mathrm{SQ} 81 \mathrm{SQ}=\mathrm{SQ} 9 \mathrm{Z} \mathrm{SQ}=09 \mathrm{SQ} \quad!$

* (SQ-STEP)



## Directional Evaluation

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; \quad!() n \mathrm{SQ} \\
\mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k 0=0 s^{\prime \prime} k+. & --s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

$!\quad \mathrm{SQ} 3()=\mathrm{SQ} \mathrm{Z} 3 \mathrm{SQ}=\mathrm{SQ} 52 \mathrm{SQ}=\mathrm{SQ} 81 \mathrm{SQ}=\mathrm{SQ} 9 \mathrm{Z} \mathrm{SQ}=09 \mathrm{SQ}!$ * (SQ-STEP)

computational inertia

$$
\begin{gathered}
t_{1} \stackrel{r}{=} t_{2} \stackrel{s}{=} t_{3} \\
s \neq r^{-1}
\end{gathered}
$$

reversible programming
$א$ : motivation, semantics, \& tutorial
$א$ : advanced features \& properties
alethe $+\boldsymbol{\kappa}$ concurrency

## Sandia National Laboratories

## Alethe

$$
\begin{aligned}
& \%>7^{\wedge} 2 z \\
& \text { () } 499^{\wedge} 2 \\
& z \rightarrow 49 \\
& \%<c \text { ^2 } 49 \\
& \text { ^2 } 7 \text { () } \\
& C \rightarrow 7 \\
& \text { \% } \\
& \text { n ~2 n2: } \\
& \text { ! Go n } \quad Z=G o Z n 2 . \\
& \text { Go (S n) m = Go n (S k): } \\
& \mathrm{mn}+1 \mathrm{n} \text {. } \\
& 1 \mathrm{n}+\mathrm{kn} \text {. }
\end{aligned}
$$

## 

$$
\begin{aligned}
\text { (PATTERN TERM) } & \pi::=\mathrm{SYM}|\operatorname{VAR}|\left(\pi^{*}\right) \\
\text { (RULE) } & \rho::=\pi^{*}=\pi^{*} \\
\text { (DEFINITION) } & \delta::=\rho: \rho^{*} \mid!\pi^{*} ; \\
\text { (PATTERN TERM) } & \pi::=\mathrm{SYM}|\mathrm{VAR}|\left(\pi^{*}\right) \\
\text { (RULE) } & \Pi::=\pi: \pi^{*} \mid \mathrm{VAR}^{\prime}: \pi^{*} \\
\text { (DEFINITION) } & \delta::=\left\{\Pi^{*}\right\}=\left\{\Pi^{*}\right\}: \Pi^{*} \mid!\pi^{*}
\end{aligned}
$$

$$
\operatorname{Alice}[x \cdot x s]=\left\{\begin{array}{l}
\operatorname{Alice} x s \\
\operatorname{Courier} x
\end{array}\right\} ; \quad\left\{\begin{array}{l}
\operatorname{BOB} y s \\
\operatorname{CourieR} y
\end{array}\right\}=\text { Вов }[y \cdot y y] ;
$$

## Properties + Future Work

- r-Turing Complete
- Confluent Semantics
- Concurrent variant
- Interpreter written
- Implement \& study concurrent variant
- Type system
- Apply to molecular programming


## Thank you!



## MICKLEM LAB



Engineering and Physical Sciences Research Council


Department of Applied Mathematics and Theoretical Physics (DAMTP)

