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Irreversible Computing

a b  c

0 0  1 
0 1  1 
1 0  1 
1 1  0

mov AL, 314 
jne loop

int i = 5; 
while (i--) { 
  printf("%d\n", i); 
}

sort !" Ord a !# [a] !$ [a] 
sort [] = [] 
sort (x:xs) = 
  let le = sort [a | a !% xs, a !& x] 
      gt = sort [a | a !% xs, a >  x]  
  in  le !' [x] !' gt
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Invertibility?
THE QUICK BROWN 
FOX JUMPS OVER 
THE LAZY DOG

QEB NRFZH YOLTK 
CLU GRJMP LSBO 
QEB IXWV ALD

encdec

divmod

muladd

inverse 
programs

bidirectional 
transforms

{"fruit":[ 
  "apple", 
  "banana", 
  "cherry"]}

fruit: 
- apple 
- banana 
- cherry

debugging
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Reversible Computing

* but reversible!

*

<latexit sha1_base64="kq7RGdEn24CHQZ92xng+Xj38SRo=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9mVoh6LXjxWsB/QriWbZtvQJLskWW1Z+j+8eFDEq//Fm//GtN2Dtj4YeLw3w8y8IOZMG9f9dlZW19Y3NnNb+e2d3b39wsFhQ0eJIrROIh6pVoA15UzSumGG01asKBYBp81geDP1m49UaRbJezOOqS9wX7KQEWys9DBCHYFjbSIUlkZn3ULRLbszoGXiZaQIGWrdwlenF5FEUGkIx1q3PTc2foqVYYTTSb6TaBpjMsR92rZUYkG1n86unqBTq/RQGClb0qCZ+nsixULrsQhsp8BmoBe9qfif105MeOWnTMaJoZLMF4UJR/bLaQSoxxQlho8twUQxeysiA6wwMTaovA3BW3x5mTTOy95FuXJXKVavszhycAwnUAIPLqEKt1CDOhBQ8Ayv8OY8OS/Ou/Mxb11xspkj+APn8weLE5Hm</latexit>

x 7! f(x)

<latexit sha1_base64="uuAdWDK9kVzz2CsnDynDByYdVzo=">AAACA3icbVBNS8NAEN34WetX1JteFovQgpREinosevFYwX5AW8pmu2mXbjZhd6ItoeDFv+LFgyJe/RPe/Ddu2xy09cHA470ZZuZ5keAaHOfbWlpeWV1bz2xkN7e2d3btvf2aDmNFWZWGIlQNj2gmuGRV4CBYI1KMBJ5gdW9wPfHr90xpHso7GEWsHZCe5D6nBIzUsQ+HuCWYD4r3+kCUCh9wfnjq54eFQsfOOUVnCrxI3JTkUIpKx/5qdUMaB0wCFUTrputE0E6IAk4FG2dbsWYRoQPSY01DJQmYbifTH8b4xChd7IfKlAQ8VX9PJCTQehR4pjMg0Nfz3kT8z2vG4F+2Ey6jGJiks0V+LDCEeBII7nLFKIiRIYQqbm7FtE8UoWBiy5oQ3PmXF0ntrOieF0u3pVz5Ko0jg47QMcojF12gMrpBFVRFFD2iZ/SK3qwn68V6tz5mrUtWOnOA/sD6/AGsRpbk</latexit>

x $ (x, f(x))

<latexit sha1_base64="zSFo36pVkUQCZGko8awBYfoT9sE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cq9gOaUDbbTbt0sxt2N0oJ/RtePCji1T/jzX/jps1BWx8MPN6bYWZemHCmjet+O6WV1bX1jfJmZWt7Z3evun/Q1jJVhLaI5FJ1Q6wpZ4K2DDOcdhNFcRxy2gnHN7nfeaRKMykezCShQYyHgkWMYGMl379nw5HBSsmnSr9ac+vuDGiZeAWpQYFmv/rlDyRJYyoM4VjrnucmJsiwMoxwOq34qaYJJmM8pD1LBY6pDrLZzVN0YpUBiqSyJQyaqb8nMhxrPYlD2xljM9KLXi7+5/VSE10FGRNJaqgg80VRypGRKA8ADZiixPCJJZgoZm9FZIQVJsbGlIfgLb68TNpnde+ifn53XmtcF3GU4QiO4RQ8uIQG3EITWkAggWd4hTcndV6cd+dj3lpyiplD+APn8wfMrpGK</latexit>

)
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0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 1 0 
1 0 1 
1 1 1

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 1 
1 1 0

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1

Toffoli / CCNOTFredkin / CSWAP
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theseus

kayak

RFUN



Sandia National Laboratories August 2022

reversible programming 

ℵ: motivation, semantics, & tutorial 

ℵ: advanced features & properties 

alethe + ℵ concurrency



Sandia National Laboratories August 2022

!e ℵ–Calculus: Motivation

- λ-calculus inspiration 

- simple definition 

- reduction semantics 

- self-contained execution 

- molecular programming
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Attempt 1: !e Σ-Calculus
definition

Church encoding

list reversal

Hannah Earley — 2017 — sigma Interpreter — https://github.com/hannah-earley/sigma-repl 
Hannah Earley — 2017 — sigma Interpreter — https://github.com/hannah-earley/sigma-examples 

https://github.com/hannah-earley/sigma-repl
https://github.com/hannah-earley/sigma-examples
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Attempt 2: !e ℵ–Calculus

- declarative 

- reversible TRS semantics, without history 

- minimalistic definition

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)
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+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.
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or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
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is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
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and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
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Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
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to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
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+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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square number. If we try to take

√
10,
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the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition
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reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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2 Examples
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(either initial or final), where a, b, c are variable terms. This is stated via the
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line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
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the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,
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2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

* * *
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)
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′
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+ s′ k () = () s′′ k +. -- s
′′
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′

+ k

Sq n Z Sq = () n Sq; (sq–end)
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the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
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There is no precondition in the forward direction (except that m should be a
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from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

*

?
computational inertia
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Alethe

Hannah Earley — 2020 — Alethe Interpreter — https://github.com/hannah-earley/alethe-repl

a   Z   +   a     Z; 
a (S b) + (S c) (S b): 
    a b + c b.

n ^2 n2: 
  ! Go n     Z = Go Z n2. 
    Go (S n) m = Go n (S k): 
        m n + l n. 
        l n + k n.

a b `Pair` n: 
  ! Go   n     Z   Z = Go Z   a    b. 
    Go (S n)   Z   b = Go n (S b)  Z; 
    Go (S n) (S a) b = Go n   a  (S b);
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.
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9 = 3) is given by:
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well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take
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the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗ ) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)
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consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
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Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.
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9 = 3) is given by:
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There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take
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the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:
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- r-Turing Complete 
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- Implement & study 
concurrent variant 

- Type system 

- Apply to molecular 
programming
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