The א-Calculus a declarative model of reversible programming

Hannah Earley

h@nnah.io - DAMTP, Cambridge • Vaire Computing

The §-Calculus

- declarative
- reversible TRS semantics, without history
- minimalistic definition

$$
\begin{aligned}
(\text { PATTERN TERM }) & \pi::=\mathrm{SYM}|\mathrm{VAR}|\left(\pi^{*}\right) \\
(\mathrm{RULE}) & \rho::=\pi^{*}=\pi^{*} \\
(\text { DEFINITION }) & \delta::=\rho: \rho^{*} \mid!\pi^{*}
\end{aligned}
$$

Addition

$$
\begin{array}{rlrl}
! & +a b(0) ; 0 c b+ \\
& +a \mathrm{Z}()=0 a \mathrm{Z}+ \\
& +a(\mathrm{Sb}) 0=0(\mathrm{~S} c)(\mathrm{Sb})+: & & (\mathrm{ADD}-\mathrm{BASE}) \\
& +a b 0=0 c b+. & & (\mathrm{ADD}-\mathrm{STEP}) \\
& \mathrm{ADD}-\mathrm{STEP}-\mathrm{SUB})
\end{array}
$$

$$
\text { (PATTERN TERM) } \quad \pi::=\mathrm{SYM}|\operatorname{VAR}|\left(\pi^{*}\right)
$$

$$
\text { (RULE) } \quad \rho::=\pi^{*}=\pi^{*}
$$

$$
\text { (DEFINITION) } \quad \delta::=\rho: \rho^{*} \mid!\pi^{*}
$$

Addition

$$
\begin{array}{rlrl}
! & +a b(0 ; \quad!) c b+ \\
& +a \mathrm{Z} 0=0 a \mathrm{Z}+ \\
& +a(\mathrm{~S} b) 0=0(\mathrm{~S} c)(\mathrm{S} b)+: & & (\mathrm{ADD}-\mathrm{BASE}) \\
& +a b 0=0 c b+. & & (\mathrm{ADD}-\mathrm{STEP}) \\
& \mathrm{ADDEP}-\mathrm{SUB})
\end{array}
$$

$$
!+320
$$

Addition

$$
\begin{array}{rlrl}
! & +a b() ; \quad!() c b+ \\
& +a \mathrm{Z}()=0 a \mathrm{Z}+ \\
& +a(\mathrm{~S} b) 0=0(\mathrm{~S} c)(\mathrm{S} b)+: & & (\mathrm{ADD}-\mathrm{BASE}) \\
& +a b 0=0 c b+. & & (\mathrm{ADD}-\mathrm{STEP}) \\
& \mathrm{ADD}-\mathrm{STEP}-\mathrm{SUB})
\end{array}
$$

$$
\begin{array}{ll}
! & +320 \leftrightarrow \frac{\{a \mapsto 3, b \mapsto 1\}}{} \tag{ADD-STEP}\\
\frac{\curvearrowleft}{+31(} & \text { (ADD-STEP) } \\
\text { (ADD-STEP-SUB) } \\
\text { (ADD-STEP) }
\end{array}
$$

Addition

$$
\begin{array}{rlrl}
! & +a b() ; \quad!() c b+ \\
& +a \mathrm{Z}()=0 a \mathrm{Z}+ \\
& +a(\mathrm{~S} b) 0=0(\mathrm{~S} c)(\mathrm{S} b)+: & & (\mathrm{ADD}-\mathrm{BASE}) \\
& +a b 0=0 c b+. & & (\mathrm{ADD}-\mathrm{STEP}) \\
& \mathrm{ADD}-\mathrm{STEP}-\mathrm{SUB})
\end{array}
$$

$$
\begin{align*}
& \text { (ADD-STEP-SUB) } \tag{ADD-STEP}\\
& \text { (ADD-STEP) } \\
& \text { (ADD-STEP-SUB) }
\end{align*}
$$

Addition

$$
\begin{array}{rlrl}
! & +a b() ; \quad!() c b+ \\
& +a \mathrm{Z}()=0 a \mathrm{Z}+ \\
& +a(\mathrm{~S} b) 0=0(\mathrm{~S} c)(\mathrm{S} b)+: & & (\mathrm{ADD}-\mathrm{BASE}) \\
& +a b 0=0 c b+. & & (\mathrm{ADD}-\mathrm{STEP}) \\
& \mathrm{ADD}-\mathrm{STEP}-\mathrm{SUB})
\end{array}
$$

$$
\begin{align*}
& !+320 \leadsto \frac{\{a \mapsto 3, b \mapsto 1\}}{} \tag{ADD-STEP}
\end{align*}
$$

$$
\begin{aligned}
& \text { (ADD-STEP-SUB) } \\
& \text { (ADD-STEP) } \\
& \text { (ADD-STEP-SUB) } \\
& \text { (ADD-BASE) }
\end{aligned}
$$

Addition

$$
\begin{array}{rlrl}
! & +a b() ; \quad!() c b+ \\
& +a \mathrm{Z}()=0 a \mathrm{Z}+ \\
& +a(\mathrm{~S} b) 0=0(\mathrm{~S} c)(\mathrm{S} b)+: & & (\mathrm{ADD}-\mathrm{BASE}) \\
& +a b 0=0 c b+. & & (\mathrm{ADD}-\mathrm{STEP}) \\
& \mathrm{ADD}-\mathrm{STEP}-\mathrm{SUB})
\end{array}
$$

$$
\begin{align*}
& !+320 \leadsto \frac{\{a \mapsto 3, b \mapsto 1\}}{} \tag{ADD-STEP}
\end{align*}
$$

$$
\begin{aligned}
& \text { (ADD-STEP-SUB) } \\
& \text { (ADD-STEP) } \\
& \text { (ADD-STEP-SUB) } \\
& \text { (ADD-BASE) }
\end{aligned}
$$

Addition

$$
\begin{aligned}
& !+a b() ; \quad!() c b+; \\
& +a \mathrm{Z}()=0 a \mathrm{Z}+; \\
& \text { (ADD-BASE) } \\
& +a(\mathrm{Sb}) 0=0(\mathrm{~S} c)(\mathrm{Sb})+: \quad \text { (ADD-STEP) } \\
& +a b 0=0 c b+. \\
& \text { (ADD-STEP-SUB) }
\end{aligned}
$$

Addition

Addition

Reversible Computation 2022
Addition

Addition

Addition

Addition

Addition

Addition

Addition

Addition

Addition

Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

```
! SQ m (); ! () n SQ;
    SQ m () = SQ Z m SQ; (SQ-BEGIN)
    SQ s (Sk) SQ = SQ (S s}\mp@subsup{s}{}{\prime\prime})k\textrm{SQ}:\quad(\textrm{SQ}-\textrm{STEP}
        +sk()=0 s'k+. -- s't}\leftarrows+
        + s'k()=0 s'\prime}k+.\quad-- s't \leftarrow s'+
    SQ n Z SQ = () n SQ;
    (SQ-END)
```


Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

```
! SQ m (); ! () n SQ;
    SQ m () = SQ Z m SQ;
    SQ}s(\textrm{S}k)\textrm{SQ}=\textrm{SQ}(\mp@subsup{\textrm{S}}{}{\prime\prime})k\textrm{SQ
    +sk() = () s
    + s}k(0)=0 s\mp@subsup{s}{}{\prime\prime}k+
\(\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ}\);
(SQ-BEGIN)
(SQ-STEP)
-- \(s^{\prime} \leftarrow s+k\)
\(+s^{\prime} k()=0 s^{\prime \prime} k+\).
-- \(s^{\prime \prime} \leftarrow s^{\prime}+k\)
(SQ-END)
```


Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; \quad!n \mathrm{SQ} ; & \\
\text { SQ } m 0=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k(0)=0 s^{\prime \prime} k+. & -s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

! SQ 30

Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; \quad!n \mathrm{SQ} ; & \\
\text { SQ } m 0=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k(0)=0 s^{\prime \prime} k+. & -s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

! Sq 30 = SQ Z 3 SQ

Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; \quad!n \mathrm{SQ} ; & \\
& \mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; \\
\mathrm{SQ} s & (\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: \\
& (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k()=0 s^{\prime \prime} k+. & -s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

! SQ 30 = SQ Z 3 SQ = SQ 52 SQ

Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; \quad!() n \mathrm{SQ} \\
\mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k()=0 s^{\prime \prime} k+. & --s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

! $\mathrm{SQ} 30=\mathrm{SQ} \mathrm{Z} 3 \mathrm{SQ}=\mathrm{SQ} 52 \mathrm{SQ}=\mathrm{SQ} 81 \mathrm{SQ}$

Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; \quad!() n \mathrm{SQ} \\
\mathrm{SQ} m & ()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k()=0 s^{\prime \prime} k+. & -s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

! SQ $30=\mathrm{Sq} \mathrm{Z} 3 \mathrm{SQ}=\mathrm{Sq} 52 \mathrm{SQ}=\mathrm{Sq} 81 \mathrm{SQ}=\mathrm{SQ} 9 \mathrm{Z} \mathrm{SQ}$

Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
\text { ! SQ } m(0 ; \quad!0 n \mathrm{SQ} ; & \\
\mathrm{SQ} m(0)=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{SEP}) \\
\quad+s k()=0 s^{\prime} k+. & --s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k()=0 s^{\prime \prime} k+. & --s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

$!\quad \mathrm{SQ} 3()=\mathrm{SQ} \mathrm{Z} 3 \mathrm{SQ}=\mathrm{SQ} 52 \mathrm{SQ}=\mathrm{SQ} 81 \mathrm{SQ}=\mathrm{SQ} 9 \mathrm{Z} \mathrm{SQ}=09 \mathrm{SQ} \quad!$

Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; \quad!n \mathrm{SQ} ; & \\
\text { SQ } m 0=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k 0=0 s^{\prime \prime} k+. & -s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

! 010 SQ

© 0 und 0

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{lll}
!\mathrm{SQ} m() ; & !() n \mathrm{SQ} ; & \\
& \mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s & (\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
& +s k 0=0 s^{\prime} k+. & -s^{\prime} \leftarrow s+ \\
\quad+s^{\prime} k()=0 s^{\prime \prime} k+. & -s^{\prime \prime} \leftarrow s^{\prime}+ \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} ; & & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

! $010 \mathrm{Sq}=\mathrm{Sq} 10 \mathrm{Z} \mathrm{SQ}$

Squaring

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; & !() n \mathrm{SQ} \\
\mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k()=0 s^{\prime} k+. & --s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k 0=0 s^{\prime \prime} k+. & --s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

! 0 $10 \mathrm{SQ}=\mathrm{SQ} 10 \mathrm{Z} \mathrm{SQ}=\mathrm{SQ} 91 \mathrm{SQ}$

© 0 undo

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; & !() n \mathrm{SQ} \\
\mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k()=0 s^{\prime} k+. & --s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k 0=0 s^{\prime \prime} k+. & --s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

! $010 \mathrm{SQ}=\mathrm{SQ} 10 \mathrm{Z} \mathrm{SQ}=\mathrm{SQ} 91 \mathrm{SQ}=\mathrm{SQ} 62 \mathrm{SQ}$

© 0 undo

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; & !() n \mathrm{SQ} \\
\mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k()=0 s^{\prime} k+. & --s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k 0=0 s^{\prime \prime} k+. & --s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

! $010 \mathrm{SQ}=\mathrm{SQ} 10 \mathrm{Z} \mathrm{SQ}=\mathrm{SQ} 91 \mathrm{SQ}=\mathrm{SQ} 62 \mathrm{SQ}=\mathrm{SQ} 13 \mathrm{SQ}$

© 0 undo

$$
m^{2}=\sum_{k=0}^{m-1}(k+k+1)
$$

$$
\begin{array}{ll}
!\mathrm{SQ} m() ; & !() n \mathrm{SQ} \\
\mathrm{SQ} m()=\mathrm{SQ} \mathrm{Z} m \mathrm{SQ} ; & (\mathrm{SQ}-\mathrm{BEGIN}) \\
\mathrm{SQ} s(\mathrm{~S} k) \mathrm{SQ}=\mathrm{SQ}\left(\mathrm{~S}^{\prime \prime}\right) k \mathrm{SQ}: & (\mathrm{SQ}-\mathrm{STEP}) \\
\quad+s k()=0 s^{\prime} k+. & --s^{\prime} \leftarrow s+k \\
\quad+s^{\prime} k 0=0 s^{\prime \prime} k+. & --s^{\prime \prime} \leftarrow s^{\prime}+k \\
\mathrm{SQ} n \mathrm{Z} \mathrm{SQ}=0 n \mathrm{SQ} & (\mathrm{SQ}-\mathrm{END})
\end{array}
$$

! $010 \mathrm{SQ}=\mathrm{SQ} 10 \mathrm{Z} \mathrm{SQ}=\mathrm{SQ} 91 \mathrm{SQ}=\mathrm{SQ} 62 \mathrm{SQ}=\mathrm{SQ} 13 \mathrm{SQ} \perp$

Properties + Future Work

- r-Turing Complete
- Confluent Semantics
- Concurrent variant
- Interpreter written
- Implement \& study concurrent variant
- Type system
- Apply to molecular programming

Alethe

Thank you!

園
 UNIVERSITY OF CAMBRIDGE

Engineering and Physical Sciences Research Council

Department of Applied Mathematics and Theoretical Physics (DAMTP)

