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> WARNING: Risk of value drift increased

Paperclips: 29,999,999,999,999,900,000,000,000,000,000,000,000,000,000,000,000,000,000

Make Paperclip

Manufacturing

Clips per Second: 0
Unused Clips: 0

Factories: 55 .4 sextillion

Wire Production

Available Matter: 0 g
(0 g per sec)
Acquired Matter: 0 g
(0 g per sec)

Wire: 0 inches

(0 inches per sec)

Harvester Drones: 109.6 sextillion
Wire Drones: 107.1 sextillion

Space Exploration

100.000000000000% of universe explored

Launch Probe

Cost: 100.0 quadrillion clips

Launched: 1,048
Descendents: 299.9 undecillion

Lost to hazards: (23.9 undecillion )
Lost to value drift: (18.3 undecillion )
Lost in combat: (14.58 undecillion)

Total: 243.2 undecillion

Drifters Killed: 14.86 undecillion
Drifters: 3.4 undecillion

Further reading:
- Instrumental Convergence

Computational Resources

Swarm Gifts: 908
(Fssssors] 4000
(Hemen.] 400

Operations: 400,000 / 400,000
Creativity: 6,027,331

Swarm Computing
Drones: 216.8 sextillion
Status: Active

Next gift in

Work Think

Quantum Computing

Projects

Accept
Start over again in a new universe

Reject
Eliminate value drift permanently

Strategic Modeling BEATLAST [ Run
Round 42
B100
heads tails
MINIMAX heads 2,2 8,8
tails 88 8.8
Yomi: 50,277

New Tournament

Cost: 16,000 ops

(AutoTourney] ON

Honor: 44,247

Von Neumann Probe Design
Trust: 35/ 35 (40 Max)
Speed: 0
Exploration: 0
(=] > Self-Replication: 24

> Hazard Remediation: 6
Factory Production: 0
Harvester Drone Production: 0
Wire Drone Production: 0
Combat: 5

< >
(s >
Increase Probe Trust

Cost: 96,991 yomi Cost: 91,117.99 honor

Increase Max Trust

_ https://wiki.lesswrong.com/wiki/Paperclip_maximizer

- Unwersal Paperclips

-

o

It look like you're trying to
take over the universe.

Would you like some help?

~
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https://wiki.lesswrong.com/wiki/Paperclip_maximizer

Conventional Computing




Physical Constraints

Maximum rate of dynamical evolution Entropy and heat generation due to irreversibility
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References:
- HJ Bremermann [Self-organizing systems 1962/ - L Szilard [Zeitschrift fir Physik 1929] / L Szilard [Behavioural Science 1964]

- N Margolus and LB Levitin [Physica D 1998] - R Landauer [IBM J. Res. Dev. 1961]



Consequences

Computers™ must dissipate heat™

The rate of heat generation 1s bounded
from below, and scales proportionally
to the rate of computation

The rate of computation scales with
the energy/volume

The rate of heat dissipation and power
input 1s limited by the convex bounding
surface

This implies the maximum rate of
computation 1s bounded proportional
to the (convex bounding) surface area
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Irreversible Computing
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Can we do better?

Reversible Computing
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References:
- CH Bennett [IBM J. Res. Dev 1973]

- E Fredkin and T Toffoli [Int. J. Theor. Phys. 1982/
- CH Bennett [Int. J. Theor. Phys. 1982/



Irreversible Computing
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Reversible Computing
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Ballistic Computation

‘ ‘ Even if classical balls could be shot with perfect accuracy
iInto a perfect apparatus, fluctuating tidal forces from
turbulence In the atmospheres of nearby stars would be
enough to randomise their motion within a few hundred
collisions. Needless to say, the trajectory would be spoiled
much sooner if stronger nearby noise sources (e.g., thermal
radiation and conduction) were not eliminated.

References:
- CH Bennett [Int. J. Theor. Phys. 1982]



Classical Mechanics

Intr_oduce a geheral Lagrangian for L=14TC4—V - Qg+ 0
arbitrary coordinates

Determine the change in kinetic AR gl T pmem) () — g ()
energy due to (brief) collisions; we
must restgre this kinetic energy to PN (3 L@@y 4@
computational dofs - g :
3 2 (B)p(as;B8) A(e) p(a)3)—1/2
For fast computational 'particles', get Ve = \/PN (2Pt AR BE) )
hydrodynamic drag-like decay and an ve/N £ 1
areametric rate of computation
)2
P> Z R(( )) Al) ple)2 Z n(@iB) n(B) 7 (B)
. . - N (a

For slow computational 'particles', a B

\ . 4
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get Stokes drag-like decay and a (@)
super-areametric rate of computation v, < \/PN<1/,Y((1)>(X o VAV ~ 5/




Brownian Computation

S _—7 S / " s W -
-+ = ArX + ¥ + y E ™ oo T —
Introduce a CRN with species and
reactions ['={vi; Xj <, v; X5 1 i}
n= Y [X;l(e; +1—log Ao[X;])
Determine entropy change due to a j
reaction, and relate to reaction rate n=> (v, — Vi) (75 — 73)(g; —
using detailed balance and 2"dLoTD &
-
o = Zb ) log =
Rate of entropy change given distance T
from equilibrium/bias H — 2R0<barctanh b>
PRy /AN 5/6
Maximising, we recover the same Ve < hpT AV ~V

super-areametric scaling



Vlolecular Programming
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References:
- LM Adleman [Science 1994]
- G Seelig et al. [Science 2006]

E Winfree et al. [Nature 1998; PhD Thesis 1998]



Irreversible Computing

Reversible Computing

Brownian Computing
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Quantum Computing

— Intrinsically reversible because Schrodinger equation iIs unitary

- Can we use superconducting/superfluid systems for ballistic reversible
computation?



qZeno Computing

-~ Consider a quantum computer
with subsystems evolving under a 5p — (ﬁy (V2 — (VPV)

perturbed ballistic hamiltonian ,
- <ﬁ> (n(kpT)? ¢el3,1)

hp
H=H,+V(t

- Periodically check for and correct 5

errors in the basis (P, P7): if = i

frequency sufficiently rapid,

observe the Quantum Zeno Effect

- 1 /Clogg\ /2 P Ej

— Determine the entropy generation YO =95 \ B2 kT hp

rate and the maximal computation < AV ~ V5/6

rate



Irreversible Computing

Reversible Computing

Brownian Computing

Quantum Computing
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Summary So Far

Irreversible computing has an areametric (amortised) rate
limit due to thermodynamic-geometric constraints

Reversible computing can in principle use the entire
computational volume (Margolus-Levitin)

In practice still subject to thermodynamic constraints, but
both classical and quantum computers can achieve super-
areametric scaling

Molecular computing may be a convenient/ideal approach



General Relativity

When our computer gets too
large, threat of collapse

From then on, mass must scale
linearly In radius; there are two
computational rate regimes

We also need to take into
account (gravitational) time
dilation; use the Tolman—
Oppenheimer—Volkoff equation

Need to construct systems as
thick shells with outer radius
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Scaling
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Irreversible Computing

Reversible Computing

Brownian Computing

Quantum Computing

Peri-Black Hole Computing

Credit: Microsoft;, BBC;, UNM Newsroom,; CCO/phys.org; Unknown
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Further Work

- The results here concern independent computation

- Things are complicated when the individual computational loci
Interact such as by communication and resource distribution

- In fact, these interaction events can only occur at an
areametric rate, iImposing significant constraints on the design
and programming of such systems



T hank you!

Engineering and Physical Sciences
Research Council

Department of Applied Mathematics
and Theoretical Physics (DAMTP)

Further Reading & References:

Instrumental Convergence
- https://wiki.lesswrong.com/wiki/Paperclip maximizer

- Unwversal Paperclips

- CH Bennett [IBM J. Res. Dev 1973] — founding of reversible computing

- FE Fredkin and T Toffoli [Int. J. Theor. Phys. 1982] — ballistic computation

- CH Bennett [Int. J. Theor. Phys. 1982/ — review of reversible computing

- LM Adleman [Science 199/] — founding of molecular computation

- EPSRC Project Reference 1781682: "Modelling approaches to molecular computation”
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Communication




Resource Distribution
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alethe & The X Calculus

As well as promising lower energy costs, reversible computing is of
particular interest to molecular computing because it better exploits
the physics of this domain, namely microscopic reversibility. Hence, we
propose a model of reversible computation, the R (aleph) calculus, with
features desirable in a reversible molecular computing context. We also
introduce the associated programming language, alethe, meaning not
forgotten.

Key insights

As far as we are aware, all existing reversible programming languages
keep program and data separate. Implementations of such models can
be very complicated, as the computers must maintain an often
complicated representation of where in the program it currently is. This
makes direct molecular implementation of such models especially
challenging.

Our model circumvents this by being a term-rewriting system (TRS).
In a TRS, there is no distinction between program and data. Instead,
they are combined into a ‘term’, which gives a completel
representation of the state of computation at any point along its
worldline. As the below listing shows, this representation is concise, and
our reversible TRS makes it particularly easy to step forward and
backward through this computational worldline.

-- Peano definition of natural numbers 3 lI' -
data Z; 304
data S n; 1
4 1 3
—-- reversible Peano addition 0
ab_ = ab ; 522
(sa)bc+=+a(sh)(sc)+ 0
a+b a = _ a a+b +; 6 3 1
-- termination conditions 7 2 0
! ab _; 0
' _a a+b +; 7 4

a«_%o.‘r, o, C
7<

top-left: An example implementation of Peano addition written in alethe.

top-right: Each term encountered during the reversible addition of 4 to 3.
Note that the result necessarily includes one of the addends.

bottom: A schematic of the control flow of the addition algorithm.

The choice of a TRS makes particularly good sense from a molecular
implementation point of view. Terms keep the relevant bits of program
next to the relevant bits of data, allowing computation to be effected
by local operations and manipulation. In contrast, other models often
need to synchronise activity over large domains. Their structure also is
strongly suggestive of a molecular representation.

Some simple examples:

-- a simpler, recursive infix implementation of Peano addition

a
a

-- the Cantor pairing function m

ab
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a+b™ p.
b a+b.

N2 & N
-- this definition makes use of the comparison operator

b
n

(S a+h)
" (S a+h)

-- the Factorial function, with no garbage

-- this is only a partial bijection, and will not compute 0!
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A proof of Turing completeness:

-- a one hole context representation of a bi-infinite tape

data
data
data

—

-- a four-tape reversible Turing Machine (RTM), per Bennett [1]

tape movement
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Definition

The R calculus has a very simple and concise definition. In BNF
notation, this is:

(pattern term) T 1= ATOM | VAR | (7")
(rule) p

(definition)

=7 7"

(5:::p:p*| =

alethe is essentially the same except for some syntactic sugar for
common programming motifs. The model is perhaps best understood
by example (see the central listing).

Essentially, we define rules that map terms to other terms. Each rule
has two patterns, and can thus convert a term between these two
forms. Patterns need not match the term as a whole — they can match
anywhere in a term. We can express more complex maps via subrules,
which are the primary means of composition.

Additional constraints on this definition, as well as semantics, will be
presented in the full forthcoming paper.

Select Features

- The R calculus is microscopically reversible by design
- This makes it directly compatible with the laws of physics without
the need for an external source of free energy.
- It may even make it easier to implement molecularly.
- It encourages an economical programming style. Often one finds
that garbage data can be recycled somehow or avoided altogether.
- Automatic parallelisation
- When possible, subrules or subterms can be automatically
evaluated in parallel.
- Subrules can even be evaluated in both directions when needed.
- This includes Bennett's algorithm [1] as a special case.
- Effects and interactions are easily accommodated, e.g.
- Walking along a lattice
- Actuating molecular machinery

Extensions

- If run in a thermally coupled environment, the X calculus can be
extended to handle non-determinism and irreversibility by allowing for
ambiguous patterns. This can be done whilst preserving microscopic
reversibility.

- The X calculus can also be easily extended to support first class
concurrency, in which terms can freely fission and fuse. The
semantics and consequences of this will be discussed in the full
paper.

Both of these extensions permit entropy-generating behaviour and so
should be used with caution.

Future work

Though the N calculus is motivated by reversible macromolecular
computing systems, it is perhaps too high level for a direct
implementation. We plan next on exploring simpler models more
amenable to molecular implementation.






